507 research outputs found

    Domain Bubbles of Extra Dimensions

    Get PDF
    ``Dimension bubbles'' of the type previously studied by Blau and Guendelman [S.K. Blau and E.I. Guendelman, Phys. Rev. D40, 1909 (1989)], which effectively enclose a region of 5d spacetime and are surrounded by a region of 4d spacetime, can arise in a 5d theory with a compact extra dimension that is dimensionally reduced to give an effective 4d theory. These bubbles with thin domain walls can be stabilized against total collapse in a rather natural way by a scalar field which, as in the case with ``ordinary'' nontopological solitons, traps light scalar particles inside the bubble.Comment: 13 pages, no figures; to appear in Phys.Rev.

    Fermionic and Bosonic Stabilizing Effects for Type I and Type II Dimension Bubbles

    Full text link
    We consider two types of "dimension bubbles", which are viewed as 4d nontopological solitons that emerge from a 5d theory with a compact extra dimension. The size of the extra dimension varies rapidly within the domain wall of the soliton. We consider the cases of type I (II) bubbles where the size of the extra dimension inside the bubble is much larger (smaller) than outside. Type I bubbles with thin domain walls can be stabilized by the entrapment of various particle modes whose masses become much smaller inside than outside the bubble. This is demonstrated here for the cases of scalar bosons, fermions, and massive vector bosons, including both Kaluza-Klein zero modes and Kaluza-Klein excitation modes. Type II bubbles expel massive particle modes but both types can be stabilized by photons. Plasma filled bubbles containing a variety of massless or nearly massless radiation modes may exist as long-lived metastable states. Furthermore, in contrast to the case with a "gravitational bag", the metric for a fluid-filled dimension bubble does not exhibit a naked singularity at the bubble's center.Comment: 17 pages, no figs; to appear in Phys.Rev.

    Junction Conditions of Friedmann-Robertson-Walker Space-Times

    Full text link
    We complete a classification of junctions of two Friedmann-Robertson-Walker space-times bounded by a spherical thin wall. Our analysis covers super-horizon bubbles and thus complements the previous work of Berezin, Kuzumin and Tkachev. Contrary to sub-horizon bubbles, various topology types for super-horizon bubbles are possible, regardless of the sign of the extrinsic curvature. We also derive a formula for the peculiar velocity of a domain wall for all types of junction.Comment: 7 pages, LaTeX, figures are not included (available on request by regular mail), WU-AP/31/9

    Equation of motion for a domain wall coupled to gravitational field

    Get PDF
    The equation of motion for a domain wall coupled to gravitational field is derived from the Nambu-Goto action. The domain wall is treated as a source of gravitational field. The perturbed equation is also obtained with gravitational back reaction on the wall motion taken into account. For general spherically symmetric background case, the equation is expressed in terms of the gauge-invariant variables.Comment: 13 pages, latex, no figures, uses REVTe

    Inflation and Holography in String Theory

    Full text link
    The encoding of an inflating patch of space-time in terms of a dual theory is discussed. Following Bousso's interpretation of the holographic principle, we find that those are generically described not by states in the dual theory but by density matrices. We try to implement this idea on simple deformations of the AdS/CFT examples, and an argument is given as to why inflation is so elusive to string theory.Comment: 15 pages, LaTeX, 2 figures. Uses psbox.te

    Modelling the dynamics of global monopoles

    Get PDF
    A thin wall approximation is exploited to describe a global monopole coupled to gravity. The core is modelled by de Sitter space; its boundary by a thin wall with a constant energy density; its exterior by the asymptotic Schwarzschild solution with negative gravitational mass MM and solid angle deficit, ΔΩ/4π=8πGη2\Delta\Omega/4\pi = 8\pi G\eta^2, where η\eta is the symmetry breaking scale. The deficit angle equals 4π4\pi when η=1/8πG≡Mp\eta=1/\sqrt{8\pi G} \equiv M_p. We find that: (1) if η<Mp\eta <M_p, there exists a unique globally static non-singular solution with a well defined mass, M0<0M_0<0. M0M_0 provides a lower bound on MM. If M0<M<0M_0<M<0, the solution oscillates. There are no inflating solutions in this symmetry breaking regime. (2) if η≥Mp\eta \ge M_p, non-singular solutions with an inflating core and an asymptotically cosmological exterior will exist for all M<0M<0. (3) if η\eta is not too large, there exists a finite range of values of MM where a non-inflating monopole will also exist. These solutions appear to be metastable towards inflation. If MM is positive all solutions are singular. We provide a detailed description of the configuration space of the model for each point in the space of parameters, (η,M)(\eta, M) and trace the wall trajectories on both the interior and the exterior spacetimes. Our results support the proposal that topological defects can undergo inflation.Comment: 44 pages, REVTeX, 11 PostScript figures, submitted to the Physical Review D. Abstract's correcte

    Gauged Dimension Bubbles

    Full text link
    Some of the peculiar electrodynamical effects associated with gauged ``dimension bubbles'' are presented. Such bubbles, which effectively enclose a region of 5d spacetime, can arise from a 5d theory with a compact extra dimension. Bubbles with thin domain walls can be stabilized against total collapse by the entrapment of light charged scalar bosons inside the bubble, extending the idea of a neutral dimension bubble to accommodate the case of a gauged U(1) symmetry. Using a dielectric approach to the 4d dilaton-Maxwell theory, it is seen that the bubble wall is almost totally opaque to photons, leading to a new stabilization mechanism due to trapped photons. Photon dominated bubbles very slowly shrink, resulting in a temperature increase inside the bubble. At some critical temperature, however, these bubbles explode, with a release of radiation.Comment: 14 pages, no figures; to appear in Phys.Rev.

    Bubble wall perturbations coupled with gravitational waves

    Get PDF
    We study a coupled system of gravitational waves and a domain wall which is the boundary of a vacuum bubble in de Sitter spacetime. To treat the system, we use the metric junction formalism of Israel. We show that the dynamical degree of the bubble wall is lost and the bubble wall can oscillate only while the gravitational waves go across it. It means that the gravitational backreaction on the motion of the bubble wall can not be ignored.Comment: 23 pages with 3 eps figure

    Boundary Effects in Local Inflation and Spectrum of Density Perturbations

    Full text link
    We observe that when a local patch in a radiation filled Robertson-Walker universe inflates by some reason, outside perturbations can enter into the inflating region. Generally, the physical wavelengths of these perturbations become larger than the Hubble radius as they cross into the inflating space and their amplitudes freeze out immediately. It turns out that the corresponding power spectrum is not scale invariant. Although these perturbations cannot reach out to a distance inner observer shielded by a de Sitter horizon, they still indicate a curious boundary effect in local inflationary scenarios.Comment: 11 pages, 8 figures, revtex4, v4: minor typos corrected, twocolumn versio

    dS/CFT correspondence on a brane

    Get PDF
    We study branes moving in an AdS Schwarzschild black hole background. When the brane tension exceeds a critical value, the induced metric on the brane is of FRW type and asymptotically de Sitter. We discuss the relevance of such configurations to dS/CFT correspondence. When the black hole mass reaches a critical value that depends on the brane tension, the brane interpolates in the infinite past and future between a dS space and a finite space of zero Hubble constant. This corresponds to a cosmological evolution without a Big Bang or a Big Crunch. Moreover, the central charge of the CFT dual to the dS brane enters the Cardy-Verlinde formula that gives the entropy of the thermal CFT dual to the bulk AdS black hole.Comment: 15 pages, 1 figure, v2 references adde
    • …
    corecore